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Long-term	ozone	exposure	and	mortality

• is	the	fiIh	highest	mortality	risk	factor	globally	and	associated	with	about	4.9	million	deaths		(2017)	
• reduced	about	20	months	of	our	life	in	average,	with	significant	regional	differences	
• Developing	countries:	Increased	emissions	&	stronger	OPE	→	increasing	risks

(State	of	Global	Air,	2019)

Number	of	deaths	a:ributable		to	air	pollu;on	(ambient	PM2.5,	household,	and	ozone)	in	2017

India	
1.7M

China	
1.7M

The	in-situ	observing	network	is	clearly	insufficient	
for	global	health	impact	assessment	(Fleming	et	al.,	
2017;	Seltzer	et	al.,	2018	for	US,	Europe,	and	China)

The	regular	surface	ozone	monitoring	sites:	
Roughly	only	17%	of	the	global	populaIon!
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Long-term	ozone	exposure	and	mortality

Emissions Health	Impacts

Chemical	transport	models

Concentra;ons

PopulaIon,	Mortality	rate,	
ConcentraIon	response

Chemical	transport	models	provide	global	maps	but	suffer	from	systema\c	errors	(Silva	et	al.,	
2016;	Malley	et	al.,	2017,	Zhang	et	al.,	2018).	Chang	et	al.	(2019)	combined	mul\ple	models	
and	TOAR	observa\ons,	but	it	is	s\ll	limited	by	the	observing	network
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Emissions Health	ImpactsConcentra;ons

New	state-of-the-art	chemical	data	assimila;on	systems	can	mi\gate	these	limita\ons	
by	integra\ng	various	observa\onal	informa\on	with	a	model
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Multi-constituent	chemical	data	assimilation

MLS	(O3,	HNO3)
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OMI	(SO2) Tropospheric	Chemistry	
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Assimilated	
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→	NOx,	CO,	SO2	emissions	

→	35	species	concentra;ons	+	
Lightning	NOx	

EnKF	data	assimilaIon	to	integrate	a	suite	of	measurements	from	mulIple	satellite	sensors

OMI	(HCHO) →	VOCs	emissions	(under	development)
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Miyazaki	et	al.,	2019,	ACPD

Chemical	reanalyses	provide	useful	informa\on	on	exposure	es\mates	and	its	aeribu\ons.	
Nevertheless,	systema;c	model	errors	must	be	quan;fied	in	order	to	assess	their	fidelity	

Multi-model	data	assimilation	integration
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Emissions Health	ImpactsConcentra;ons
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2005-2010

2010-2015

2015-2018

Global	NOx	emission	trends	(2005-2018)

strong	impacts	on	air	
quality	and	human	health	
in	developing	countries



Global	NOx	emission	trends	(2005-2018)
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Global	total	emissions:		
Almost	constant	during	2005-2018	(49.3±2.7TgN)



Global	surface	ozone	trends		
(Annual	average	daily	maximum	8-h	ozone:	ADM8h)

Chemical	reanalyses	provide	useful	informa;on	on	exposure	es;mates	and	its	a:ribu;ons	
(mostly	due	to	NOx	emissions	changes	over	polluted	areas)
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Change	in	mortality	due	to	long-term	ozone	exposure

ΔMort in 2016 [number of deaths per 1°x1° grid]

The evidence from epidemiological and toxicological studies
for associations, and causal linkages, between O3 exposure
(short- and long-term) and specific health outcomes has been
reviewed by the WHO and U.S. EPA (REVIHAAP 2013; U.S.
EPA 2013). For respiratory mortality, REVIHAAP (2013) identi-
fied three cohort studies that linked long-term O3 exposure and
relevant outcomes, including respiratory mortality specifically
(Jerrett et al. 2009), COPD mortality (Zanobetti and Schwartz
2011), and cardiopulmonary mortality (Smith et al. 2009b). The
U.S. EPA (2013) concluded that there was “likely to be a causal
relationship between long-term exposure to O3 and respiratory
effects” based on epidemiologic studies of respiratory mortality
(Jerrett et al. 2009; Zanobetti and Schwartz 2011), respiratory
morbidity (Jacquemin et al. 2012; Lin et al. 2008; Meng et al.
2010; Parker et al. 2009), and toxicological evidence of biologi-
cally plausible mechanisms for respiratory effects of O3, includ-
ing “pulmonary function decrement and increases in respiratory
symptoms, lung inflammation, lung permeability, and airway
hyper-responsiveness” (U.S. EPA 2013). Evidence for causal
associations of O3 with specific causes of respiratory mortality is
more limited, with stronger evidence from studies of short-term
O3 and hospital admissions for both COPD and asthma compared
with pneumonia (Medina-Ramón et al. 2006; U.S. EPA 2013;
Zanobetti and Schwartz 2006), although a recent study reported
an association between short-term O3 exposure and hospital visits
for pneumonia, as well as COPD (Malig et al. 2016).

Methods
Long-Term O3 Exposure Estimation
Global gridded (2× 2:5!, approximately 221× 278 km at the
equator) hourly O3 concentrations were simulated using the
GEOS-Chem Chemical Transport Model (Bey et al. 2001) driven
by GEOS-5 meteorological fields for 2010 from the Global
Modeling and Assimilation Office, with 47 vertical levels defined
from the surface up to 0.01 hPa. Simulations used 2010 anthropo-
genic emissions from the Hemispheric Transport of Air Pollution
version-2 inventory (Janssens-Maenhout et al. 2015). The model
also considers additional emissions, described in further detail by
Lapina et al. (2014), which include biogenic VOCs, soil NOx,
lightning NOx, and monthly biomass burning emissions.

When estimating attributable deaths globally based on the
J2009 relative risk estimates, we used an O3 exposure metric that
was consistent with the premise of the exposure metric for which
the J2009 relative risk estimates were derived. Jerrett et al.
(2009) used the average daily maximum 1-h O3 concentration
between April and September as the O3 exposure metric in the
United States alone, where O3 concentrations are highest in
spring and summer months. In other regions, the seasonal pattern
of O3 variation is different. To account for variability in the 6-mo
period with highest daily maximum 1-h O3 concentrations across
regions, we estimated, for each grid, annual maximum 6-mo av-
erage daily maximum 1-h (6mDM1h) O3 concentrations. The
6mDM1h metric calculated grid-by-grid accounts for differences
in seasonal O3 variation across the globe that affects the timing of
the maximum 6-mo O3 concentration (Anenberg et al. 2010;
Silva et al. 2013, 2016a). When estimating attributable deaths
using the T2016 risk estimates, we used the annual average daily
maximum 8-h O3 concentration (ADM8h) for each grid, consis-
tent with the analysis from which the relative risk estimates were
derived. For each day, 24 eight-hour rolling mean O3 concentra-
tions were calculated as the average O3 concentration at the start
hour and the following 7 h. The maximum of the 24 eight-hour
O3 concentrations on each day were selected and averaged across
the year to derive the ADM8h concentration in each grid.

Exposure–Response Functions
Mortality attributable to long-term O3 exposure was estimated
for 181 countries in 2010 using Equations 1 and 2, consistent
with methodologies used to estimate global health impacts of O3
previously (Anenberg et al. 2010; Silva et al. 2013, 2016a):

DMort = y0ð1− exp−bDXÞPop: [1]

HR= expbDY [2]

DMort is the change in mortality attributable to long-term O3
exposure, and was estimated separately for the population in each
grid cell covering a particular country. In this study, we estimated
DMort for each country in 2010 for respiratory mortality
[International Classification of Diseases (ICD)-10 codes: J00–
J98], consistent with the causes of death investigated in Jerrett
et al. (2009) and Turner et al. (2016), and separately for chronic
obstructive pulmonary disease (COPD) mortality (ICD-10 codes:
J19–J46), a subset of respiratory mortality.

Pop. is the exposed population, which was the population in
each country ≥30 y of age, estimated from UN Population
Division population statistics disaggregated by age for each
country (https://esa.un.org/unpd/wpp/DataQuery/) because par-
ticipants in the ACS CPS-II cohort were required to be over 30 y
of age at enrollment. The population was distributed to the grids
covering each country using population count data for 2010 from
the Gridded Population of the World (GPW) version 3 dataset
(CIESIN-FAO-CIAT 2005). y0 is the baseline mortality rate for
each cause of death, derived as the ratio of the deaths of people
≥30 y of age from the cause and the number of people in each
country ≥30 y of age estimated by the UN Population Division
(https://esa.un.org/unpd/wpp/DataQuery/). For each country, the
total number of deaths for each disease category (respiratory and
COPD) for the population ≥30 y of age in 2010 were from the
GBD 2015 estimates derived by the Institute of Health Metrics
and Evaluation (GBD 2015 Mortality and Causes of Death
Collaborators 2016). Uncertainty in y0 was derived from the con-
fidence intervals (CIs) reported by GBD 2015 Mortality and
Causes of Death Collaborators (2016) for the number of deaths
from each cause, as described below.

b is the effect estimate [natural log of the hazard ratio (HR)]
for the association between long-term O3 concentrations and respi-
ratory or COPD mortality (Equation 2). In Jerrett et al. (2009), and
Turner et al. (2016), the HRs are reported as the increased hazard
of death for a 10-ppb increase in long-term O3 exposure, which is
DY in Equation 2. For J2009, in the main analysis we used the ln-
HR for a 10-ppb increase in O3 concentration (6mDM1h metric)
from the two-pollutant model adjusted for PM2:5 (HR=1:040;
95% CI: 1.013, 1.067), which has been applied in several previous
analyses (Anenberg et al. 2010; Fann et al. 2012; Silva et al. 2013,
2016a; West et al. 2013). For T2016, in the main analysis we used
the ln-HR for a 10-ppb increase in O3 concentration (ADM8h met-
ric) from a model adjusted for near-source PM2:5, regional PM2:5,
and NO2 (HR=1:12; 95% CI: 1.08, 1.16). This HR was used to
estimate updated long-term O3-attributable respiratory mortality
[using two low-concentration cutoffs (LCCs) to reflect uncertainty
in the concentration–response relationship below exposure levels
in Turner et al. (2016) (see below)]. T2016 relative risk estimates
for COPD mortality also were adjusted for PM2:5 (near-source and
regional) and NO2 [HR=1:14 (95% CI: 1.08, 1.21)].

Finally, DX is the long-term O3 exposure (estimated using
GEOS-Chem model output), expressed relative to a threshold ex-
posure (low-concentration cutoff, or LCC), below which we
assume there is no effect of O3 exposure on mortality. The spe-
cific LCCs used corresponded to the minimum O3 exposure or
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• y0:	baseline	mortality	rate	(800/100,000)	
• Pop:	exposed	populaIon	(GWP	v4)	
• β:	effect	esImate	(from	the	hazard	raIo:	HR))	
• HR:	1.12	(Turner	et	al.,	2016)	
• LCC:	33.3	ppb

the fifth percentile of O3 exposure in the respective ACS CPS-II
population on which each set of relative risk estimates (J2009 or
T2016) were based because the validity of each risk estimate is
uncertain for exposures below the actual levels experienced by
each population. For analyses based on J2009 relative risk esti-
mates and the 6mDM1h ozone exposure metric, LCCs for the
minimum and fifth percentiles of exposure were set at 33:3 ppb
and 41:9 ppb, respectively; for analyses using T2016 relative risk
estimates and the ADM8h exposure metric, corresponding LCCs
were set at 26:7 ppb and 31:1 ppb. For each grid cell, DX was cal-
culated from the GEOS-Chem derived O3 concentration (O3_
GC) as

DX= f 0, if O3 GC≤LCC
O3 GC−LCC, if O3 GC>LCC [3]

To derive central estimates of long-term O3-exposure attribut-
able respiratory, and COPD deaths for individual countries, we
applied Equation 1 for the population ≥30 y of age assigned to
each grid cell covering the country, using the central estimates of
b and the national baseline mortality rate (y0). To account for
uncertainty in the relative risk estimate (b) and baseline mortality
rates (y0), we sampled 1,000 estimates of b and y0 from normal
distributions based on the 95% CIs for each variable, applied
each resulting value to Equation 1 to derive 1,000 estimates of
long-term O3 attributable deaths, and used the resulting distribu-
tion to derive 95% CIs for attributable mortality in each grid cell.
Estimates for individual grids were summed to derive national,
regional, and global estimates, assuming dependence among the
gridded estimates.

Sensitivity analyses were performed to estimate long-term
O3-attributable mortality using T2016 relative risk estimates
derived using a single-pollutant model that did not adjust for
near-source PM2:5, regional PM2:5, or NO2 exposures [HR=1:14
(95% CI: 1.10, 1.18)]. In addition, we also performed analyses
using methods comparable with those used in previous studies to
estimate O3-attributable mortality. This allowed assessment of
the consistency of results obtained in those studies, with compa-
rable estimates using the O3 exposure, baseline mortality, and
population data used in this study. To make a direct comparison
with the Global Burden of Disease (GBD) analyses, we also fur-
ther estimated long-term O3-attributable deaths using comparable

methods. Specifically, GBD estimated long-term O3-attributable
deaths associated with chronic obstructive pulmonary disease
(COPD) only, using the maximum 3-mo average daily maximum
1-h O3 concentration, and the single-pollutant J2009 relative risk
estimate [1.029 (95% CI 1.010, 1.048)] that was derived for total
respiratory mortality (GBD 2013 Risk Factors Collaborators
2015; GBD 2015 Risk Factors Collaborators 2016; Lim et al.
2012).

Results
Globally, O3 exposure ranged between 13:6 ppb and 84:6 ppb
when quantified using the 6-mo daily maximum 1-h concentra-
tion (6mDMA1) relevant for the J2009 relative risk estimates,
and between 11:3 ppb and 72:6 ppb when quantified as the annual
daily maximum 8-h concentration (ADMA8) relevant for the
T2016 relative risk estimates (Table 1; see also Figure S1). Both
O3 exposure metrics were elevated across Asia (particularly India
and China) compared with other regions (Table 1).

Using the T2016 relative risk estimate (HR=1:12) and
ADM8h concentrations in each grid, we estimated that 1.23 mil-
lion (95% CI: 0.85, 1.62 million) respiratory deaths among the
global population ≥30 y of age were attributable to long-term O3
exposure in 2010 using the minimum exposure in the T2016
cohort (26:7 ppb) as the low-concentration cutoff (LCC), and
1.04 million deaths (95% CI: 0.72, 1.37 million) using the fifth
percentile LCC (31:1 ppb) (Table 2). Attributable deaths esti-
mated using the T2016 relative risk estimate and the fifth percen-
tile LCC represent 20.3% (95% CI: 14.5, 26.9%) of all respiratory
deaths among those ≥30 y of age in 2010. In contrast, using the
J2009 relative risk (HR=1:04) and 6mDM1h concentrations, we
estimated 0.55 million (95% CI: 0.20, 0.90) deaths attributable to
long-term O3 in 2010 using the minimum exposure in the J2009
cohort as the LCC (33:3 ppb) and 0.40 million (95% CI: 0.14,
0.65) million attributable respiratory deaths using the fifth per-
centile LCC (41:9 ppb).

The majority (79–81%) of our estimated long-term O3-
attributable respiratory deaths using the T2016 relative risk esti-
mates were in Asia (Table 2, Figure 1), predominantly in India
and China [37–39% of the global total for India depending on the
LCC, and 26% for both LCCs for China (Table 2)]. Applying the
T2016 relative risk estimates increased estimated long-term

Table 1. Range of O3 concentrations (ppb) in grids covering world regions and selected countries estimated from GEOS-chem model simulations.

Region Metric Minimum 5th percentile 25th percentile Median 75th percentile 95th percentile Maximum
Asia 6mDMA1 13.6 26.5 50.4 59.2 66.1 75.9 84.0

ADMA8 11.7 23.5 42.4 50.4 57.2 66.1 72.6
China 6mDMA1 46.2 51.7 59.9 64.4 70.2 78.5 84.0

ADMA8 40.9 43.7 50.6 54.5 59.6 67.7 72.6
India 6mDMA1 36.1 45.0 62.4 67.2 73.2 78.3 80.1

ADMA8 30.7 36.5 50.8 57.9 64.7 70.7 72.6
Europe 6mDMA1 36.9 38.7 40.2 42.6 48.9 57.8 66.0

ADMA8 30.3 33.5 35.0 37.8 41.1 48.9 54.3
Africa 6mDMA1 25.8 34.7 44.6 50.2 56.3 67.4 84.6

ADMA8 20.2 29.3 37.5 43.2 47.8 53.4 59.6
Latin America and the Caribbean 6mDMA1 15.8 22.3 29.9 38.7 49.5 59.0 78.5

ADMA8 11.3 15.6 24.5 32.3 39.7 50.1 62.6
North America 6mDMA1 39.3 39.8 41.4 43.8 51.7 64.8 77.3

ADMA8 34.1 35.6 37.0 39.4 44.0 54.4 58.8
United States 6mDMA1 39.6 40.3 43.3 51.8 60.1 68.8 77.3

ADMA8 34.1 36.3 38.6 44.5 50.9 55.6 58.8
Oceania 6mDMA1 13.6 18.5 25.8 33.0 35.9 38.0 40.3

ADMA8 11.7 15.0 20.1 29.2 32.7 34.5 37.6
Global 6mDMA1 13.6 26.8 39.8 44.8 54.8 68.9 84.6

ADMA8 11.3 22.5 34.4 39.0 46.3 58.2 72.6

Note: The range of the maximum 6-mo daily maximum 1-h O3 concentration (6mDMA1, relevant for J2009 relative risk estimates), and the annual average daily maximum 8-h con-
centrations (ADMA8, relevant for T2016 relative risk estimates) are shown. Ranges for China and India are shown because of the large health impacts estimated in these countries.
Ranges from the United States are also shown because this is where the Jerrett et al. (2009) and Turner et al. (2016) studies were conducted.
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The evidence from epidemiological and toxicological studies
for associations, and causal linkages, between O3 exposure
(short- and long-term) and specific health outcomes has been
reviewed by the WHO and U.S. EPA (REVIHAAP 2013; U.S.
EPA 2013). For respiratory mortality, REVIHAAP (2013) identi-
fied three cohort studies that linked long-term O3 exposure and
relevant outcomes, including respiratory mortality specifically
(Jerrett et al. 2009), COPD mortality (Zanobetti and Schwartz
2011), and cardiopulmonary mortality (Smith et al. 2009b). The
U.S. EPA (2013) concluded that there was “likely to be a causal
relationship between long-term exposure to O3 and respiratory
effects” based on epidemiologic studies of respiratory mortality
(Jerrett et al. 2009; Zanobetti and Schwartz 2011), respiratory
morbidity (Jacquemin et al. 2012; Lin et al. 2008; Meng et al.
2010; Parker et al. 2009), and toxicological evidence of biologi-
cally plausible mechanisms for respiratory effects of O3, includ-
ing “pulmonary function decrement and increases in respiratory
symptoms, lung inflammation, lung permeability, and airway
hyper-responsiveness” (U.S. EPA 2013). Evidence for causal
associations of O3 with specific causes of respiratory mortality is
more limited, with stronger evidence from studies of short-term
O3 and hospital admissions for both COPD and asthma compared
with pneumonia (Medina-Ramón et al. 2006; U.S. EPA 2013;
Zanobetti and Schwartz 2006), although a recent study reported
an association between short-term O3 exposure and hospital visits
for pneumonia, as well as COPD (Malig et al. 2016).

Methods
Long-Term O3 Exposure Estimation
Global gridded (2× 2:5!, approximately 221× 278 km at the
equator) hourly O3 concentrations were simulated using the
GEOS-Chem Chemical Transport Model (Bey et al. 2001) driven
by GEOS-5 meteorological fields for 2010 from the Global
Modeling and Assimilation Office, with 47 vertical levels defined
from the surface up to 0.01 hPa. Simulations used 2010 anthropo-
genic emissions from the Hemispheric Transport of Air Pollution
version-2 inventory (Janssens-Maenhout et al. 2015). The model
also considers additional emissions, described in further detail by
Lapina et al. (2014), which include biogenic VOCs, soil NOx,
lightning NOx, and monthly biomass burning emissions.

When estimating attributable deaths globally based on the
J2009 relative risk estimates, we used an O3 exposure metric that
was consistent with the premise of the exposure metric for which
the J2009 relative risk estimates were derived. Jerrett et al.
(2009) used the average daily maximum 1-h O3 concentration
between April and September as the O3 exposure metric in the
United States alone, where O3 concentrations are highest in
spring and summer months. In other regions, the seasonal pattern
of O3 variation is different. To account for variability in the 6-mo
period with highest daily maximum 1-h O3 concentrations across
regions, we estimated, for each grid, annual maximum 6-mo av-
erage daily maximum 1-h (6mDM1h) O3 concentrations. The
6mDM1h metric calculated grid-by-grid accounts for differences
in seasonal O3 variation across the globe that affects the timing of
the maximum 6-mo O3 concentration (Anenberg et al. 2010;
Silva et al. 2013, 2016a). When estimating attributable deaths
using the T2016 risk estimates, we used the annual average daily
maximum 8-h O3 concentration (ADM8h) for each grid, consis-
tent with the analysis from which the relative risk estimates were
derived. For each day, 24 eight-hour rolling mean O3 concentra-
tions were calculated as the average O3 concentration at the start
hour and the following 7 h. The maximum of the 24 eight-hour
O3 concentrations on each day were selected and averaged across
the year to derive the ADM8h concentration in each grid.

Exposure–Response Functions
Mortality attributable to long-term O3 exposure was estimated
for 181 countries in 2010 using Equations 1 and 2, consistent
with methodologies used to estimate global health impacts of O3
previously (Anenberg et al. 2010; Silva et al. 2013, 2016a):

DMort = y0ð1− exp−bDXÞPop: [1]

HR= expbDY [2]

DMort is the change in mortality attributable to long-term O3
exposure, and was estimated separately for the population in each
grid cell covering a particular country. In this study, we estimated
DMort for each country in 2010 for respiratory mortality
[International Classification of Diseases (ICD)-10 codes: J00–
J98], consistent with the causes of death investigated in Jerrett
et al. (2009) and Turner et al. (2016), and separately for chronic
obstructive pulmonary disease (COPD) mortality (ICD-10 codes:
J19–J46), a subset of respiratory mortality.

Pop. is the exposed population, which was the population in
each country ≥30 y of age, estimated from UN Population
Division population statistics disaggregated by age for each
country (https://esa.un.org/unpd/wpp/DataQuery/) because par-
ticipants in the ACS CPS-II cohort were required to be over 30 y
of age at enrollment. The population was distributed to the grids
covering each country using population count data for 2010 from
the Gridded Population of the World (GPW) version 3 dataset
(CIESIN-FAO-CIAT 2005). y0 is the baseline mortality rate for
each cause of death, derived as the ratio of the deaths of people
≥30 y of age from the cause and the number of people in each
country ≥30 y of age estimated by the UN Population Division
(https://esa.un.org/unpd/wpp/DataQuery/). For each country, the
total number of deaths for each disease category (respiratory and
COPD) for the population ≥30 y of age in 2010 were from the
GBD 2015 estimates derived by the Institute of Health Metrics
and Evaluation (GBD 2015 Mortality and Causes of Death
Collaborators 2016). Uncertainty in y0 was derived from the con-
fidence intervals (CIs) reported by GBD 2015 Mortality and
Causes of Death Collaborators (2016) for the number of deaths
from each cause, as described below.

b is the effect estimate [natural log of the hazard ratio (HR)]
for the association between long-term O3 concentrations and respi-
ratory or COPD mortality (Equation 2). In Jerrett et al. (2009), and
Turner et al. (2016), the HRs are reported as the increased hazard
of death for a 10-ppb increase in long-term O3 exposure, which is
DY in Equation 2. For J2009, in the main analysis we used the ln-
HR for a 10-ppb increase in O3 concentration (6mDM1h metric)
from the two-pollutant model adjusted for PM2:5 (HR=1:040;
95% CI: 1.013, 1.067), which has been applied in several previous
analyses (Anenberg et al. 2010; Fann et al. 2012; Silva et al. 2013,
2016a; West et al. 2013). For T2016, in the main analysis we used
the ln-HR for a 10-ppb increase in O3 concentration (ADM8h met-
ric) from a model adjusted for near-source PM2:5, regional PM2:5,
and NO2 (HR=1:12; 95% CI: 1.08, 1.16). This HR was used to
estimate updated long-term O3-attributable respiratory mortality
[using two low-concentration cutoffs (LCCs) to reflect uncertainty
in the concentration–response relationship below exposure levels
in Turner et al. (2016) (see below)]. T2016 relative risk estimates
for COPD mortality also were adjusted for PM2:5 (near-source and
regional) and NO2 [HR=1:14 (95% CI: 1.08, 1.21)].

Finally, DX is the long-term O3 exposure (estimated using
GEOS-Chem model output), expressed relative to a threshold ex-
posure (low-concentration cutoff, or LCC), below which we
assume there is no effect of O3 exposure on mortality. The spe-
cific LCCs used corresponded to the minimum O3 exposure or
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Malley	et	al.	(2017):	1.23M	
This	study:																		1.25M

2005 2016

Globe 1,002	K 1,248	K

US 58	K 54	K

E	China 256	K 280	K

India 286	K 399	K

25%↑

7%	↓

9%↑

40%↑



Uncertainty	estimates	using	MOMO-Chem
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• Harnessing the current observing system 
provides sufficient constraints to greatly 
reduce the influences of model errors and 
to provide the consistent ozone analysis 
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Health	impacts

• Possible uncertainty ranges in the a posteriori 
emissions due to model errors: 13–31% for 
industrialized areas and 4–21% for BB areas.



The	analysis	increments	
were	used	to	quanIfy	model	

sensiIviIes	related	to	
chemistry	and	transport

Ozone response to NOx emissions
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• TR	>	NH	:	La\tudinal	shiIs	in	NOx	emissions	would	increases	global	ozone.	
• The	sensi\vity	of	surface	ozone	to	NOx	emissions	varied	by	a	factor	of	2	among	models,	
which	would	increase	exposure	es\mate	uncertainty.		

• The	observa\onally-constrained,	mul\-model	integrated	fields	provide	fundamentally	
different	fast	chemical	processes	than	those	in	the	individual	models.	

Mul\-model		
mean/spread

Integrated		
reanalysis

Uncertainty	estimates	using	MOMO-Chem



MDA8	ozone	trend	(2016	minus	2006)	:	before	assimila;on

GEOS-Chem AGCM-CHASER

MIROC-Chem MIROC-Chem-H

UnrealisIc	trends	&	large	spreads	among	the	models	(2-10	ppb)

Uncertainty	estimates	using	MOMO-Chem

ppb



GEOS-Chem AGCM-CHASER

MIROC-Chem MIROC-Chem-H

MulI-model	spreads	are	reduced	to	1-5	ppb		
→	up	to	30	%	mortality	uncertainty

MDA8	ozone	trend	(2016	minus	2006)	:	aher	assimila;on

Uncertainty	estimates	using	MOMO-Chem

ppb



Individual	satellite	measurements	have	provided	an	unparalleled	source	of	global	data	
but	suffer	from	limited	surface	sensi\vity	for	many	key	species	

Towards	an	Air	Quality		Constellation

TES/OMI TES OMI

TES/OMI	to	infer	global	surface	ozone	
A53T-2932	poster	by	Nadia	Colombi	

	(Friday	aLernoon)

How does the constellation improve  
health impact assessment?  

GEO	sounders	will	provide	an	unprecedented	number	of	
composition	observations	at	high	resolution. 
LEO	sounders	(IASI,	CrIS,	S5p)	provide	the	global	picture	and	
thread	the	GEO	observations	together.		
Multispectral	retrievals	provide	improved	vertical	sensitivity.	



Conclusions

• While	the	most	recent	reanalysis	products	(e.g.,	TCR-2	&	CAMS)	agree	well	each	
other,	the	discrepancy	increased	towards	the	surface	due	to	differing	chemical	
model,	assimila\on	approaches,	and	observing	system.		

• The	sensi\vity	of	surface	ozone	to	NOx	emissions	varied	by	a	factor	of	2	among	
models,	which	would	increase	the	inter-reanalysis	discrepancy	and	exposure	
es\mate	uncertainty.		

• The	mul\-cons\tuent	and	mul\-model	data	assimila\on	framework	provides	
observa\onally-constrained	es\mates	of	global	air	quality	exposure	(1.00M	for	
2005	and	1.25M	for	2016)	and	its	uncertainty	(up	to	30	%)	for	the	past	decade.	

• Assimila\ng	datasets	from	a	new	constella\on	of	LEO	sounders,	GEO	satellites,	
and	mul\spectral	retrievals	would	further	enhance	the	poten\al	of	chemical	
reanalysis	for	observa\onally	constrained	global	health	impact	assessment	


